Jet fires effects: experimental studies

Gilles BERNARD-MICHEL (CEA)
Etienne STUDER (CEA)
François SAUZEDDE (CEA)
Didier BOUIX (CEA)
Jet fires effects: experimental studies

Outline

- Objectives
- Tests matrix
- Means of tests
- Timeline
Jet fires effects: experimental studies

Objectives

- Effect of TPRD fire on vehicle fire dynamics in tunnel

- Studied criteria
 - Impact of ventilation
 - Impact of the release direction
 - Impact of TPRD diameters
 - Fire characteristics

- Measured parameters
 - Pressure, temperatures
 - Heat fluxes
 - Gases concentrations (H₂, He, O₂, CO₂, CO)
 - Cameras

Digital Stakeholders Workshop, 4-5 May 2020
Jet fires effects: experimental studies

Tests synopsis

TPRD no
 yes
 Selected diameters = 0.5 / 1 / 2 / 3 / 4

Fire no
 yes
 Test 3

H₂ no
 yes
 Ventilation

 no
 yes
 Upwardly oriented

 no
 yes
 Test 5

 Test 6

He,N₂ no
 yes
 Test 2

H₂ yes
 Test 11

See tests in section tank rupture

Digital Stakeholders Workshop, 4-5 May 2020
Jet fires effects: experimental studies
Means of testing: Tunnel

- **7 priority tests**

<table>
<thead>
<tr>
<th>Test N°</th>
<th>Description</th>
<th>Gas</th>
<th>TPRD</th>
<th>Vehicle</th>
<th>Ventilation</th>
<th>Goal / Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Devices qualification tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reproduce one of the pre-tests for validation</td>
</tr>
<tr>
<td>1</td>
<td>Jet fire – Reference test: Ignited jet and fire: H₂ jet on fire (burner type) with downwardly oriented TPRD</td>
<td>H₂</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Accident/ Referent scenario. 700 bar as nominal value With ventilation and smoke (TPRD to be pick up for tests 1 and 12)</td>
</tr>
<tr>
<td>2</td>
<td>Unignited gas dispersion in a tunnel</td>
<td>He</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>No fire, concentration measurements along the tunnel (Prepare the ignition of test 8, bench CFD)</td>
</tr>
<tr>
<td>3</td>
<td>Characterization of a single fire as test 1</td>
<td>-</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Fire burner alone with smoke, ventilated tunnel Thermal flux measurements and smoke dispersion</td>
</tr>
<tr>
<td>4</td>
<td>Jet fire / Test 1 without ventilation</td>
<td>H₂</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>H₂ jet test on fire with smoke, non ventilated tunnel, downwardly oriented TPRD - Impact of the ventilation (tests 1 and 4) - H₂ impact on fire (tests 3 and 4)</td>
</tr>
<tr>
<td>5</td>
<td>Jet fire / Effect of TPRD orientation</td>
<td>H₂</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>H₂ jet test on fire with smoke, ventilated tunnel, upwardly oriented TPRD TPRD orientation impact (tests 1 and 4)</td>
</tr>
<tr>
<td>6</td>
<td>Jet fire / Reproducibility of test 1</td>
<td>H₂</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Repeatability of the reference test. Second reference test (same as test 1)</td>
</tr>
</tbody>
</table>

- **Two campaigns**
 - Pre – tests campaign Q2/2020
 - Nominal Testing campaign Q4/2020
Jet fires effects: experimental studies

Means of testing : Tunnel

<table>
<thead>
<tr>
<th>Tunnel data</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>110 m (4 km total)</td>
</tr>
<tr>
<td>High</td>
<td>7.5m mean. (7.2 to 8m)</td>
</tr>
<tr>
<td>Width</td>
<td>11.2</td>
</tr>
<tr>
<td>Gradient, Slope</td>
<td>0 %</td>
</tr>
<tr>
<td>Section</td>
<td>70.5 m²</td>
</tr>
<tr>
<td>Volume</td>
<td>7,760 m³</td>
</tr>
<tr>
<td>Ventilation flow</td>
<td>138,000 m³/h</td>
</tr>
<tr>
<td>Average air speed</td>
<td>0.54 m/s</td>
</tr>
<tr>
<td>Air change rate</td>
<td>Up to 17,8 times/h</td>
</tr>
</tbody>
</table>
Jet fires effects: experimental studies
Means of testing: Gas injection

- Size of fictive “SUV body frame”
 - 1.9 m x 4.5 m x 0.2m

Digital Stakeholders Workshop, 4-5 May 2020
Jet fires effects: experimental studies

Means of testing: testing configuration

HYTUNNEL – Pre-tests campaign

Gallery test location plan

Burner

1m² - 870 kW
(0.87 MW/m²)
Jet fires effects: experimental studies
Conclusions and further work

- 46 fire tests planned
- Initial planning
 - March 16th to April 03rd
 - Cancelled on March 15th due to COVID-19
- New dates: June 2020 (TBC)
Acknowledgements

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under grant agreement No 826193. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and United Kingdom, Germany, Greece, Denmark, Spain, Italy, Netherlands, Belgium, France, Norway, Switzerland.