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• It is necessary to ensure that the traffic infrastructures 
are able to withstand the specific risks that may arise 
from these new technologies.

• A quantitative risk assessment is developed to estimate 
the risk level associated with hazardous events 
scenarios related to H2 vehicles.

• The likelihood and consequences of hazardous events 
in confined spaces is evaluated and the findings are 
expressed as risk to people and structures.

Quantitive risk assessment
Objective



• Literature review revealed a few risk assessment models 
and tools, but either :

➢ they do not include hydrogen as a dangerous substance

➢ or the “low frequency – high consequence” events are not 
analysed 

• In Europe, the PIARC approach is widespread, and it has   
been chosen as a starting point for the new methodology.

• This approach is enhanced by enabling better 
implementation of hazards identification and respective 
sources for hydrogen vehicles. 

QRA
Literature review



The new methodology for H2 vehicles

▪ The QRA methodology for “quantitative tunnel and car 
park risk analysis” is an analytic method that 
fundamentally is facilitating to find the answers to the 
following main questions:

▪ What could happen inside the system?

▪ What is the probability of occurrence of the event?

▪ Having established that the event occurs, what are its 
possible consequences?

QRA



QRA
The flow diagram



▪ Worst case situation like front rear crash of a large 
vehicle in case of a traffic jam

Hazard Identification
Initiating event
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Unignited scenarios:

▪ 1. Unignited hydrogen release and dispersion in a confined space with 
mechanical ventilation 

▪ 2. Unignited hydrogen release in confined spaces with limited ventilation 

▪ 3. Unignited hydrogen release in a tunnel with natural/mechanical ventilation 

Immediate ignition scenarios:

▪ 4. Hydrogen jet fire in confined spaces with limited ventilation 

▪ 5. Hydrogen jet fire and vehicle fire in a mechanically ventilated confined 
space (maintenance shop/ underground parking) 

▪ 6. Hydrogen jet fire impingement on a tunnel 

▪ 7. Hydrogen jet fire and vehicle fire in a tunnel 

▪ 8. Fire spread in underground parking 

Burst scenario

▪ 9. Hydrogen storage vessel rupture in a tunnel 

Delayed ignition scenario

▪ 10. Hydrogen storage vessel blowdown with delayed ignition in a tunnel 
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▪ Does the accident cause a post-crash fire?

▪ Is H2 released from the system?

▪ Is H2 released by the TPRD?

▪ Is the fire extinguished on time?

▪ Is the H2 ignited?

▪ Is the H2 ignition delayed?

Probability analysis
Event tree



Event tree



Probability analysis
Tunnel crash rate
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ANAS, 2009

Accidents with material

damage only

Rate per million vehicles-km

Urban Tunnels from 0.40 to 1.50

Motorway Tunnels from 0.30 to 0.80

Accidents with people

damage

Urban Tunnels from 0.10 to 0.50

Motorway Tunnels from 0 to 0.15

Italy: 0.46 crashes per million vehicle-km 



PIARC- Tunnels manual,2017

Italy: 0.005 fires per million vehicle-km 

Probability analysis
Vehicle Fire Rate in tunnels



▪ Scarce published crash test data on H2 vehicles: 5 tests.

▪ In all 5 tests there was not enough damage to the system 
for it to leak or release hydrogen. 

▪ Sandia used a gamma distribution conjugate (Jeffreys) 
prior to account for a half of an event (0.5). 

▪ 10% probability of a release.

Probability of H2 release post-crash
P =0.10

Sandia Report - Sand2017-1115712

Probability analysis



▪ Thermally Activated Pressure Relief Device (TPRD) provides a 
controlled release of the gaseous hydrogen GH2 from a high 
pressure storage container before its walls are weakened by high 
temperatures, leading to a catastrophic rupture. 

H2 TANK IV
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Localised and Engulfing fire
BONFIRE TEST



▪ Failure rate of TPRD statistics are not available.

▪ Value for the random mechanical failure probability of 
pressure relief device (PRD) are proposed in the 
literature.

▪ FireComp project considered a failure probability of 
TPRD  of 6.04 x 10-3.

Probability of TPRD failure
Engulfing fire
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P = 6.04 x 10-3



▪ Failure rate of TPRD statistics are not available.

▪ Sandia suggested a value for TPRD failure probability (0.03) 
obtained as average of the beta distribution (0.5, 16.5)

Probability of TPRD failure
Localised fire
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P = 0.03

B.D. Ehrhart, D. M. Brooks, A. B. Muna and C. B. LaFleur 
Fire Technology 2019 https://doi.org/10.1007/s10694-019-00910-z

Assuming a Jeffrey’s beta prior distribution, the 

data in Table 2 results in a Beta(0.5, 16.5) 

distribution
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▪ “Reviews of the accident literature on the CNG and H2

composite cylinder showed that the cause of accidental 
burst of cylinders was mainly a localized fire or a wrong 
design of the size of the TPRD orifice. 

▪ Then, overpressure and fragments from the burst 
cylinder could have catastrophic consequences.” 

Ruban et al., 2012

Probability of TPRD failure
Reviews of accidents



Probability analysis
Probability of fire extinguishment

P =0.48

Fire resistane rating  = 8min

Nigel Casey - - Fire incident data for Australian road tunnels - Fire Safety Journal 111 (2020) 102909



P = 0.08 for car
P=0.2 for bus/train

TPRD 
diameter 

(mm)

Initial mass flow rates (kg/s), for:

Car (700 bar 
tank)

Bus/train (350 
bar tank)

0.5 0.0067 0.0038

1 0.0268 0.0150

2 0.1072 0.0601

3 0.2412 0.1353

4 0.4289 0.2405

5 0.6701 0.3757

6 0.9649 0.5410

car

Bus/train

F. G. Aarskog , O.R. Hansen, T. Strømgren, Ø. Ulleberg, IJHE 45(2020) 1359-1372

Probability analysis
Probability of H2 ignition



P = 0.667

▪ The probability of an immediate ignition (given that an 
ignition will occur) is 66.67%, and the complimentary 
probability of delayed ignition is 33.33%.

Probability analysis
Probability of immediate ignition

Sandia Report - Sand2017-11157



Consequence analysis
Jet fire
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▪ Calculations of flame lengths and three hazard distances for free 
hydrogen jet fires, (“E-Laboratory”; Molkov, 2012)
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▪ Universal correlation for the blast wave decay after a 
hydrogen tank rupture in a tunnel fire (Molkov and 
Dery, 2020).

Consequence analysis 
Blast wave decay in a tunnel
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▪ A tool for the assesment of a detonation case is here

taken into account (developed by KIT) to evaluate the

consequence of the hydrogen detonation in the tunnel.

▪ It is assumed to be the consequence of the release of

hydrogen from TPRD, when TPRD is activated by a fire,

and a strong ignition at the top of the tunnel at an

unfavourable time and location.

▪ The pressure loads are calculated to evaluate the

consequence of the hazard.

Consequence analysis
DDT potential
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Figure 1`. Hydrogen distribution profiles in a tunnel. 
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§ Case 1: Uniform hydrogen concentration distributed over the full tunnel cross-section for 

the given hydrogen inventory; 
§ Case 2: Uniform hydrogen concentration distributed inside a layer of hydrogen-air mixture 

for the given hydrogen inventory; 

§ Case 3: Stratified layer of hydrogen-air mixture for the given hydrogen inventory; 

§ Case 4: Stratified hydrogen-air mixture filled the whole tunnel cross-section for the given 

hydrogen inventory. 

 

Consequence analysis
DDT potential



Overpressure Hazard
Probit function for harm to people and 
structural damage
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La Chance et al. International journal of hydrogen energy 36 ( 2011 ) 2381-2388

Death due to 
lung 
hemorrhage

Structural 
damage



▪ The new QRA methodology is based on a detailed 
analysis of the incident scenarios that are unique for 
hydrogen vehicles.

▪ Catastrophic tank rupture and deflagration of 
flammable cloud under the ceiling and eventual DDT 
are considered  in terms of both frequency of such 
events and their consequences.

▪ The difficulties in ETA for emerging technologies is a 
lack of statistics, failure rates and probabilities that 
make QRA uncertainty very high. 

▪ Thus, the priority at the initial stages of technology 
implementation should be given to the development of 
inherently safer engineering solutions that are rather 
supported than substituted by risk analysis.  

Conclusions



▪ L=1.2 km

▪ Bi-directional road tunnel

▪ Two lanes (3.75 m wide) one for each traffic direction.

▪ Rectangular cross section: W=10.5 m, H=5.5 m

Case study
Road tunnel: Varano (IT)



Case study
Rail tunnel : Severn (UK)
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▪ L=7.012 km

▪ Double bore, 2 tracks

▪ W=7.9 m, H=6.1 m

https://en.wikipedia.org/wiki/Severn_Tunnel
https://www.networkrailmediacentre.co.uk/news/the-130-year-old-severn-tunnel-to-close-for-six-weeks-for-essential-railway-upgrade


• Underground Danish car park prismet in the town Århus

• area of 2144 m2

• 58 parking slots

• parking efficiency P = 37 m2/car

Case study
Underground car park: Århus (DK)
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