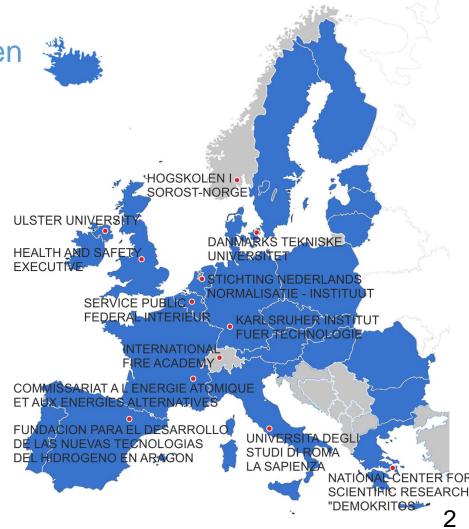


HyTunnel-CS dissemination conference 14-15 July 2022, Brussels, Belgium

Overview of HyTunnel-CS project and structure of recommendations to stakeholders

D. Makarov, D. Cirrone, V. Molkov (Ulster University)

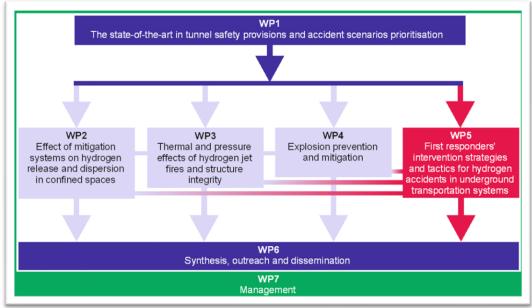
1049


Co-funded by the European Union

HyTunnel-CS project overview

https://hytunnel.net/

- Project title: Pre-normative research for safety of hydrogen driven vehicles and transport through tunnels and similar confined spaces
- Project dates:
 01/03/19 31/07/22
- Total project budget: €2.5M
- 13 partners from 11 countries


HyTunnel-CS p	artners		
Ulator University	UU - University of Ulster, UK (coordinator)		IFA - International Fire Academy, Switzerland
	KIT - Karlsruher Institut fuer Technologie, Germany	SAPIEN UNIVERSITÀ DE F	URS - <u>Universita</u> Degli Studi Di Roma La Sapienza, Italy
	NCSRD - National Center for Scientific Research "Demokritos", Greece	NËN	NEN - Stichting Nederlands Normalisatie – Instituut, Netherlands
Hogskalen i Seest-Norg Industriakaden	USN - Hogskolen I Sorost-Norge, Norway	ibz	SPFI - Service Public Federal Interieur, Belgium
Halts 5 Safety Execution	HSE - Health and Safety Executive, UK	cea	CEA - Commissariat A <u>L Energie</u> Atomique Et Aux Energies Alternatives, France
DTU of Denmark	DTU - Danmarks Tekniske Universitet, Denmark	Pro-Science	PS - Pro-Science - Gesellschaft <u>Fur</u> Wissenschaftliche Und Technische Dienstleistungen Mbh, Germany
	FHa - Fundacion Para El Desarrollo De Las Nuevas Tecnologias Del Hidrogeno En Aragon, Spain		

Project summary (1/2) Ambition, research approach, aim

- Ambition: Allow hydrogen-powered vehicles and hydrogen delivery transport enter underground traffic infrastructure.
- Aim: Conduct internationally leading PNR to close knowledge gaps and technological bottlenecks in the provision of safety and acceptable level of risk in the use of hydrogen and fuel cell cars as well as hydrogen delivery transport in underground transportation systems.

Research approach: Consider hydrogen vehicle and underground traffic structure as a single system with integrated safety approach using complementarities and synergies of theoretical, numerical and experimental studies.

Project summary (2/2) Main objectives

- Generate unique experimental data regarding the interaction of hydrogen with safety equipment and systems of underground infrastructure using the best European hydrogen safety research facilities including real tunnels.
- Create deeper knowledge of the relevant physics to underpin advanced hydrogen safety engineering and develop innovative prevention and mitigation strategies.
- Develop further existing and new contemporary CFD and FE models, engineering correlations, hazard and risk assessment tools; validate them against experimental data.
- Prepare harmonised recommendations for intervention strategies and tactics for first responders providing conditions for their life safety and property protection.
- Develop recommendations for inherently safer use of hydrogen vehicles in underground transportation systems.
- Produce commonly agreed, scientifically based recommendations for the update of relevant RCS.

Expected impact of HyTunnel-CS project

• Stakeholders, including OEMs:

Deliverable D6.9 "Recommendations for inherently safer use of hydrogen vehicles in underground transportation systems", including new engineering tools for e-Laboratory of Hydrogen Safety

First responders:

Deliverable D5.4 "Harmonised recommendations for intervention strategies and tactics for first responders providing conditions for their life safety and property protection"

Industry:

Deliverable D6.10 "Recommendations for the update of relevant RCS", including through partner NEN (secretariate of CEN/CENELEC/JTC6)

Research, including academia:

Closed knowledge gaps, addressed technological bottlenecks, shared beyond the state-of-the-art in hydrogen safety

D6.9 "Recommendations for safer use of H₂ vehicles in underground ... systems" Summary

- One of the main outcomes of HyTunnel-CS project
- The synthesis of the HyTunnel-CS outputs on understanding, prevention and mitigation strategies, and engineering solutions
- Defines the requirements for safety design and inherently safer use of hydrogen systems in tunnels and other enclosed spaces
- Gives guidance on the evaluation of appropriateness and effectiveness of conventional and innovative safety measures, in the event of incidents involving hydrogenpowered vehicles
- Defines the applicability range of recommended hazard and risk assessment models, tools and methodologies

D6.9 "Recommendations for safer use ... "

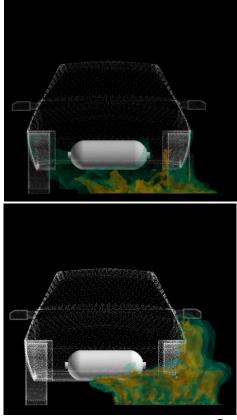
Incident scenarios with H₂ transport in underground infrastructure

- 1. Unignited hydrogen release and dispersion in a confined space with mechanical ventilation.
- 2. Unignited hydrogen release in confined spaces with limited ventilation.
- 3. Unignited hydrogen release in a tunnel with natural/mechanical ventilation.
- 4. Hydrogen jet fire in confined spaces with limited ventilation.
- 5. Hydrogen jet fire and vehicle fire in a mechanically ventilated confined space (maintenance shop/underground parking).
- 6. Hydrogen jet fire impingement on a tunnel.
- 7. Hydrogen jet fire and vehicle fire in a tunnel.
- 8. Fire spread in underground parking.
- 9. Hydrogen storage vessel rupture in a tunnel.
- 10. Hydrogen storage vessel blowdown with delayed ignition in a tunnel.

Onboard hydrogen storage quantities: 5 to 400 kg

D6.9 "Recommendations for safer use ... " Structure

Siluciule


- 1. Introduction
 - Safety objectives
 - Incident scenarios with H₂ transport in underground infrastructure
- 2. Principles of hydrogen safety design
- 3. Dealing with unignited hydrogen releases and jet fires
- 4. Hydrogen explosions prevention and mitigation
 - Prevention and mitigation of hydrogen deflagrations, DDT and detonations
 - Hydrogen tank rupture in a fire: consequences and prevention
- 5. Impact of hydrogen vehicle incidents on structures
- 6. Quantitative risk assessment methodology
- Appendix 1. Harm criteria
- Appendix 2. Information on existing RCS
- Appendix 3. Hydrogen safety engineering models and tools

Innovative safety strategies Ignited and unignited releases

Tackling hazards of hydrogen vehicles protected by TPRD:

- Design release system to exclude formation of flammable cloud that can deflagrate and transit to detonation (DDT) in an underground structure.
- We can reduce hazard distances for hydrogen releases (the similarity law) and jet fires (the dimensionless flame correlation) at atmospheric and cryogenic temperature by proper TPRD design.
- We can design TPRD parameters to exclude flammable cloud and hot products at T>300°C under the ceiling to allow underground parking.
- We can define TPRD diameter to exclude the pressure peaking phenomenon to park in garages and place tanks in storage enclosures onboard of trains, ships, planes.
- We can design any tank-TPRD system to exclude tank rupture in fire of any intensity (beyond reduced by GTR#13 localised fire intensity of HRR/A=0.35 MW/m²) and different TPRD response time.

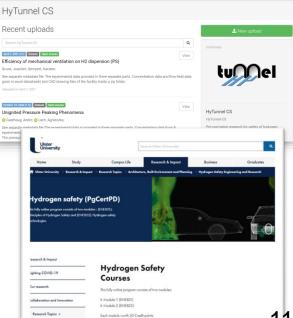
D6.9 "Recommendations for safer use ... " Safety objectives

- Analysis of effectiveness and applicability of conventional safety provisions for transport in tunnels and confined spaces.
- Wide range of hazards and incident prevention and mitigation techniques
- Design of fuel cell electrical vehicle (FCEV) is of paramount importance to allow the inherently safer use of hydrogen vehicles in existing tunnels and underground parking
- Design of FCEV should account for recommendations made in D6.9 document

Dissemination channels

https://hytunnel.net/

- All public deliverables
- Key project outputs D5.4, D6.9, D6.10
- Dissemination conference registration
- Reference to project publications
- Links to open data repositories


Open access to primary experimental data

- https://zenodo.org/communities/hytunnelcs
- <u>https://usn.figshare.com/articles/dataset/...</u>

Education

 Hydrogen Safety PGCertPD (Ulster University) <u>https://www.ulster.ac.uk/research/topic/built-</u> <u>environment/hydrogen-safety-</u> <u>engineering/study</u>

Pre-n	orn		resear	ch for			ogen driven fined space			
Home ~		Implement	ation ~	Meetings		Seminars ~	Dissemination ~	Links		Aembers area ~
	D+	Project r Delivera Milestor		>				Lead	PU/CO	Due date
	D1	1 (D1)	ety meas		dergrou		f conventional saf tion systems and s	KIT	PU	31 Aug 2019 (M6)
	D1.2 (D2) D1.3 (D3)		Report on hydrogen hazards and risks in tunnels and similar confined spaces				Ulster	PU	31 Aug 2019 (M6)	
			Report or	eport on selection and prioritisation of scenarios				HSE	PU	30 Nov 2019 (M9)
	D1.	4 (D4)	Report or nfined sp		nalysis	of RCS for tun	nels and similar co	NEN	PU	29 Feb 2020 (M12
	D2	1 (D5)		research p ned space		me on unignit	ed leaks in tunnels	NCSRD	PU	30 Nov 2019 (M9)
	D2	2 (D6)	Intermed tal studie		t on ana	lytical, numeri	cal and experimen	NCSRD	CO	31 Aug 2020 (M18
	D2	3 (D7)	Final report on analytical, numerical and experimental stud es on hydrogen dispersion in tunnels, including innovative p revention and mitigation strategies				NCSRD	PU	28 Feb 2022 (M36	

zer

Acknowledgements

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 826193. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

Clean Hydrogen Partnership

Ulster Lister at a first the factored with the f