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LES model of blast wave and fireball
Numerical details 1/2

¢ LES of shock and reacting compressible flow using Fluent
2021R2 as an engine

¢ The density-based solver

» The tunnel walls and floor are specified as non-adiabatic to
allow heat transfer from the combustion, the ground is no-
slip wall

> The external non-reflecting boundary is defined as pressure
outlet

¢ The governing equations are based on the filtered
conservation equations for mass, momentum, and energy in
their compressible form with Redlich-Kwong real gas EoS
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LES model of blast wave and fireball
Numerical details 2/2

<* The Least Square Cell-Based and second-order upwind
scheme were used for convective terms.

** The time step adapting technigue was employed to
maintain a constant Courant-Friedrichs-Lewy (CFL)
number at the value of 0.2 until the blast wave left the
tunnel at 1 s and gradually increased up to the value of
]g dgrilrllg 100 time steps to speed up the simulation of a

ireba

¢ The Smagorinsky-Lilly model for the SGS turbulence
modelling

¢ Turbulence-chemistry interaction by FRC model with
one-step Arrhenius chemistry
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Numerical model
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Numerical detalils
Tunnel and tank parameters

Tunnel cross | Tunnel length, m Tank Tank Tank

Grid CV

section, m?2 volume, L | mass, kg pressure,
number

MPa

24 (SL) o ;(5) 22; SL 457.4k
40 (DL ' 95 DL 460.2k
139( FL) 1500 m (DL, mid) 60 2.45
(FL) 120 FL 876k
Pressure, mm
Tank volume, L FESSHIS m
MPa ch BEch ok +BE
2.43 4.38 73.45 8.81 13.19
95 4.86 8.75 146.90 17.63 26.38
9.72 17.50 293.81 35.26 52.76
19.45 35.01 587.62 70.51 105.52
Note: - SL—single lane, DL — double lane, FL — five lane
- Mechanical energy contribution o=1.8
t%el - Chemical energy contribution =0.12

- 70 MPa tank ruptures at 95MPa



Model validation
Japanese experiment — open space
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Y. Tamura, M. Takahashi, Y. Maeda, H. Mitsuishi, J. Suzuki, and S. Watanabe, “Fire Exposure Burst Test of 70MPa Automobile High-pressure Hydrogen Cylinders,” The Society of Automotive Engineers of Japan Annual Autum Congress 2006, Sapporo, 2006.
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99.47 MPa
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36L
654sec
74.3kPa
23.4kPa
About 20m



Model with car in atunnel

Itial turbulence
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Results

ast wave decay in atunnel
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Correlation

Contribution of chemical energy B
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Fig. 7 — Burned hydrogen as a function of time for various
tanks (within the first 10 ms).

el Molkov, V., Dery, W., 2020. The blast wave decay correlation for hydrogen tank rupture in a tunnel fire. International
Journal of Hydrogen Energy https://doi.org/10.1016/].ijhydene.2020.08.062
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Correlation
Blast wave decay to include vehicle
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Molkov, V., Dery, W., 2020. The blast wave decay correlation for hydrogen tank rupture in a tunnel fire. International

Journal of Hydrogen Energy. https://doi.org/10.1016/}.ijhydene.2020.08.062
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Correlation

Example and methodology
Estimation of blast wave at fixed distance:

Hydrogen mass in the tank
Mechanical energy
Chemical energy

Total energy

Tunnel hydraulic diameter
Dimensionless tunnel length
Dimensionless pressure
Dimensional overpressure
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Conclusions

¢ The study of blast wave after under-vehicle tank rupture in
a fire in a tunnel was performed.

» The CFD model was validated against experiment.

> The correlations to assess the blast wave decay after
high-pressure hydrogen tank rupture in a tunnel are
proposed on compressed hydrogen tank rupture in a fire.

> The correlations have been compared with the numerical
simulation to assess the dynamics of blast wave.

¢ It could be stated that none of simple correlations can be
applied for the blast wave hazard distance in a tunnel due
to dynamics of its propagation.
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HyTunnel-CS in education
Postgraduate Certificate in Hydrogen Safety
Distance learning course (will be updated

by HyTunnel-CS outcomes), more
information at:

h\g
l/UIs_ter .
University

Faculty of Computing,
Engineering and the
Built Environment

https://www.ulster.ac.uk/research/topic/bui
lt-environment/hydrogen-safety-
enqineering/study

Get in touch

If you would like to speak fo our course feam, please get in touch by email or call us directly
at the number below. We will be happy to answer your questions:

Prof Vladimir Molkov v.molkov@ulster.ac.uk
Dr Volodymyr Shentsov v.shentsov@ulster.ac.uk
Dr Dmitriy Makarov dv.makarov@ulster.ac.uk
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https://www.ulster.ac.uk/research/topic/built-environment/hydrogen-safety-engineering/study
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