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Hazards of HFCEV in confined spaces
assoclated with high-pressure hydrogen storage

= Momentum-dominated and large flow rate release from
TPRD

= Momentum-dominated jet fire compromising
o Safety of passengers, public and first responders,
o Safety infrastructure including ventilation system
= Press-peaking phenomenon
= Hydrogen deflagration
= Hydrogen deflagration-to-detonation transition (DDT)
= Hydrogen high-pressure tank rupture
— Blast wave, fireball, projectiles
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Hydrogen release through TPRD (1/2)

TPRD parameters and direction of release should be

designed to avoid:

= Flammable cloud formation under the ceiling of

underground parking,

o Excludes flammable cloud accumulation (above 4%

vol. H,)

o Excludes potential deflagrations and DDT
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Appendix 3. Hydrogen safety engineering models and tools

This appendix includes a brief description of models and tools, including references to their
detailed description, for hydrogen safety engineering of systems, e.g. vehicles that can be
useful for assessment of hazards and associated risks in underground traffic infrastructure.
The models and tools allow assessment of hazards, incident consequences and could facilitate
the development of prevention and mitigation strategies and innovative engineering solutions.
They are built of the accumulated knowledge in hydrogen safety and results of experimental,
numerical and theoretical studies, including within the HyTunnel-CS project.

A3.1 Tools for assessment of unignited hydrogen releases and jet fires

A3.1.1 The similarity law for concentration decay in momentum-dominated jets

Releases from pressurised hydrogen storage and equipment will be in the momentum-
dominated regime. Hydrogen concentration in buoyancy-controlled jets decays faster
(Molkov, 2012) compared to momentum-dominated jets correlations which could be taken as
a conservative estimate. The semi-empirical correlation for gaseous jet decay along the
centre-line of a free, unobstructed subsonic jet was proposed by Chen and Rody (1980):
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Hydrogen mass fraction, C,,

Hydrogen release through TPRD (2/2)
Exclusion of flammable mixture formation

10"

Chaineau et al., 1991 (6 mm, 36 bar)

Houf at al., 2008 (1.905 mm, subsonic)
Kuznetsov et al., 2006 (0.25 mm, 161 bar)
Kuznetsov et al., 2006 (0.75 mm, 106 bar)
Kuznetsov et al., 2006 (1 mm, 97 bar)
Kuznetsov et al., 2006 (1 mm, 53 bar)
Okabayashi et al., 2005 (0.25 mm, 400 bar)
Okabayashi et al., 2005 (0.5 mm, 400 bar)
Okabayashi et al., 2005 (1 mm, 400 bar)
Okabayashi et al., 2005 (2 mm, 200 bar)
Okabayashi et al., 2005 (2 mm, 400 bar)
Ruffin etal., 1996 (25 mm, 32 bar)
Shevyakov et al., 2004 (6 mm, subsonic)
Shevyakov et al., 2004 (20.8 mm, subsonic)
Shirvill etal., 2006 (3 mm, 100 bar)

Shirvill et al., 2005 (3 mm, 135 bar)

Shirvill etal., 2005 (12 mm, 25 bar)

Veser et al., 2009 (1 mm, 54.3 bar)

Veser etal., 2009 (1 mm, 29.9 bar)
Similarity law
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Ref.: V. Molkov “Fundamentals of hydrogen safety”, 2012
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Hydrogen jet fires

TPRD diameter reduction to:
Not compromise evacuation from HFCEV
Not threaten public and operation of first responders

Exclude temperature of 300°C under ceiling preventing
damage to carpark ventilation

Fire from TPRD. Safety criterion: T<300°C under ceiling.
rPRD=2 mm [ [ [] HEEEEEN




Pressure peaking phenomenon (PPP)

= Phenomenon unique for H, release
= Leads to pressure increase in poorly
ventilated enclosure
= PPP is more hazardous for jet fires
= Mitigation by minimising release orifice
= Engineering and numerical tools are
published and available
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Experimental data vs simulation
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Hydrogen deflagration

Deflagrations and DDT potential can be excluded or mitigated by design of TPRD
orifice diameter and release direction in a way that:

= No flammable cloud can be formed under the ceiling of carpark

= Flammable hydrogen inventory limit in a sealed enclosure doesn’t lead to
deflagration threatening live and property

= Hydrogen release does not lead to flammable mixture with fastest burning
composition contributing to the largest deflagration overpressure

= Models and engineering tools are published and available

Appendix 3.2 Tools for assessment of deflagrations, DDT and detonations

Available onfine at www sciencedect con 2 ] ) 3 ) ]
ScienceDirect A3.2.1 Upper limit of hydrogen inventory in closed space without ventilation
— A thermodynamic model (Makarov er al., 2018) allows to estimate of maximum possible
inventory of hydrogen that can be released in a large, closed space like warehouse and, if
Deflagrations of localised homogeneous and ) ionited '
inhomogeneous hydrogen-air mixtures in — = A3.2.3 Venting of non-uniform hydrogen-air deflagrations

order ¢
hydrog  Realistic releases of hydrogen in confined spaces most often lead to formation of highly non-
The ov  uniform, stratified hydrogen-air mixtures. Venting remains the most cost-effective
combu deflagration mitigation technique. It was demonstrated that vented deflagrations of stratified
the e-I  hydrogen-air mixture may lead to significantly higher overpressure compared to the leaner
in two uniform hydrogen-air composition with the same hydrogen inventory (HyIndoor, 2014)
creating a need for a specially adopted vent sizing methodology for mitigation of localised
hydrogen-air mixture deflagrations.
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The vent sizing correlation for localised mixture deflagration in an enclosure was first
developed theoretically (Molkov, 1996) and later validated against experiments performed in
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expansion ratio ¢

Deflagration-to-detonation transition

Correlation for assessment of DDT potential in hydrogen-air mixtures
accounts:
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Characteristic reactivity

Geometry

Scale/dimension and non-uniformity of the hydrogen — air cloud
Total hydrogen inventory

Characteristic time (for hydrogen distribution and cloud formation)
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Tank rupture (1/2)
Tank-TPRD system design

= A model to calculate the lower limit for TPRD diameter that
would exclude a tank rupture in an engulfing fire was
developed within HyTunnel-CS project.

= The model is published and available to OEMs
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Tank rupture (2/2)
Explosion free in a fire TPRD-less tank

= Breakthrough safety technology (background IP)

= Allows hydrogen-powered vehicles and trains enter and
park in any confined space

= Excludes tank rupture (tested in fires with HRR/A=1
MW/m? and its consequences — blast wave, fireball,
projectiles, etc.
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Concluding remarks

= The largest hazards and risks in use of HFCEV in confined
spaces are associated with the high-pressure onboard
hydrogen storage in form of hydrogen releases, combustion,
tank ruptures, etc.

= Safety solutions are numerous and depend on the particular
accident scenario.

= The described safety strategy allows to reduce hazards and
risks to the level comparable to that of conventional fuel
vehicles and bring HFCEV to underground transport
Infrastructure satisfying the currently available RCS.
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