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Summary 

The HyTunnel-CS project aims to conduct internationally leading pre-normative research 

(PNR) to close knowledge gaps and technological bottlenecks in the provision of safety and 

acceptable level of risk, in the use of hydrogen and fuel cell cars as well as hydrogen delivery 

transport in underground transportation systems. Work Package 4 (WP4) of HyTunnel-CS will 

focus on the investigation of hydrogen releases and their subsequent ignition within 

underground transportation systems. 

This document presents the deliverable (D4.3) on the results of experimental, analytical and 

numerical studies regarding releases and explosions in tunnels and other confined spaces. 

Keywords  

Hydrogen safety; hazards; consequence assessment; unignited release; jet fire; deflagration; 

detonation; quantitative risk assessment; hydrogen in tunnel; explosion; mitigation; 

engineering correlation; numerical simulation; experiment; tunnel safety; ventilation; water 

mist; hydrogen vehicle; hydrogen dispersion; hydrogen combustion. 
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Nomenclature and abbreviation 

BLEVE Boiling Liquid Expanding Vapor Explosion 

FRR Fire resistance rating 

DDT Deflagration-to-Detonation Transition 

DNS Direct Numerical Simulations 

HPV Hydrogen Powered Vehicle 

HRR Heat Release Rate 

LES Large Eddy Simulations 

LFL 

LNB 

Lower Flammability Limit 

Leak-no-burst 

MIE Minimum Ignition Energy 

NTP Normal Temperature and Pressure 

PIARC Permanent International Association of Road Congresses 

PNR Pre-Normative Research 

PPP Pressure Peaking Phenomena 

QRA Quantitative Risk Assessment 

RUD Run-Up Distance 

SF Safety  

TPRD Thermal Pressure Relief Device 

UFL Upper Flammability Limit 

 

Definitions 

Accident is an unforeseen and unplanned event or circumstance causing loss or injury. 

Flammability range is the range of concentrations between the lower and the upper 

flammability limits. The lower flammability limit (LFL) is the lowest concentration of a 

combustible substance in a gaseous oxidizer that will propagate a flame. The upper 

flammability limit (UFL) is the highest concentration of a combustible substance in a gaseous 

oxidizer that will propagate a flame. 

Deflagration is the phenomenon of combustion zone propagation at the velocity lower than the 

speed of sound (sub-sonic) into a fresh, unburned mixture. 

Detonation is the process of combustion zone propagating at the velocity higher than the speed 

of sound (supersonic) in the unreacted mixture. 

Fire resistance rating is a measure of time for which a passive fire protection system can 

withstand a standard fire resistance test. 

Harm  is physical injury or damage to health. 

Hazard is any potential source or condition that has the potential for causing damage to 

people, property and the environment. 

Hazard distance is a distance from the (source of) hazard to a determined (by physical or 

numerical modelling, or by regulation) physical effect value (normally, thermal or pressure) 

that may lead to a harm condition (ranging from ñno harmò to ñmax harmò) to people, 

equipment or environment. 
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Hydrogen safety engineering is the application of scientific and engineering principles to the 

protection of life, property and the environment from adverse effects of incidents/accidents 

involving hydrogen. 

Incident is something that occurs casually in connection with something else. 

Limiting oxygen index is the minimum concentration of oxygen that will support flame 

propagation in a mixture of fuel, air, and nitrogen. 

Mach disk is a strong shock normal to the under-expanded jet flow direction. 

Minimum ignition energy  of flammable gases and vapours is the minimum value of the 

electric energy, stored in the discharge circuit with as small a loss in the leads as possible, 

which (upon discharge across a spark gap) just ignites the quiescent mixture in the most 

ignitable composition. For a given mixture composition the following parameters of the 

discharge circuit must be varied to get the optimum conditions: capacitance, inductivity, 

charging voltage, as well as shape and dimensions of the electrodes and the distance between 

electrodes. 

Normal temperature and pressure (NTP) conditions are temperature 293.15 K and pressure 

101.325 kPa. 

Permeation is the movement of atoms, molecules, or ions into or through a porous or 

permeable substance. 

Separation distance is the minimum separation between a hazard source and an object 

(human, equipment or environment) which will mitigate the effect of a likely foreseeable 

incident and prevent a minor incident escalating into a larger incident. 
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1 Introduction  

The HyTunnel-CS project aims to conduct internationally leading pre-normative research 

(PNR) to close knowledge gaps and technological bottlenecks, in the provision of safety and 

acceptable level of risk, in the use of hydrogen and fuel cell cars as well as hydrogen delivery 

transport in underground transportation systems. Work Package 4 (WP4) of HyTunnel-CS will 

focus on the investigation of hydrogen releases and their subsequent ignition within 

underground transportation systems. 

This document presents the deliverable (D4.3) Final report on analytical, numerical and 

experimental studies on explosions, including innovative prevention and mitigation strategies 

regarding ignited releases and explosions in tunnels and underground parking. 

The activities within this report follow the detailed programme and plan defined in deliverable 

D4.1 ñDetailed research programme on explosion in underground transportation systemsò 

(HyTunnel-CS D4.1, 2019). Some of the planned activities have been updated in response to 

developments and findings within the project. A first step to the preparation of this document 

was given by Milestone ñM4.3. Results of experimental, analytical and numerical studies for 

final reportò which presented a first version of the report on the research outcomes.  

1.1 Work Package overview 

The experimental campaigns, analytical and numerical studies in WP4 aim to address the 

identified knowledge gaps on explosion prevention and mitigation. These were defined through 

the critical review of the state of the art conducted in HyTunnel-CS D1.2 ñReport on hydrogen 

hazards and risks in tunnels and similar confined spacesò (HyTunnel-CS D1.2, 2019). The 

analytical, numerical and experimental studies aim to improve the understanding of hydrogen 

explosion hazards in tunnels and similar confined spaces, generating unique experimental data 

to support the validation of engineering and numerical models to be used in hydrogen safety 

engineering. The final scope is the identification and evaluation of innovative safety strategies 

and engineering solutions to prevent and mitigate hydrogen explosions in underground 

transportation systems. The outcomes of the research will be used as an input to the 

recommendations for RCS and for an inherently safer use of hydrogen vehicles in underground 

transportation systems. A detailed list of the work-package objectives can be found in 

(HyTunnel-CS D4.1, 2019). 

 Structure and synergy with HyTunnel-CS work plan 

Work Package 4 is structured in 5 tasks closely interconnected with each other and with 

HyTunnel-CS work plan. The first task, 4.1, aimed at the design of the research programme. 

Task 4.2 focuses on the development of analytical models and engineering-based correlations. 

Task 4.3 aims at the development and validation of CFD model against experiments available 

in literature or performed within HyTunnel-CS programme. Task 4.3 aims at performing the 

experimental work that will enhance the current understanding of explosion prevention and 

mitigation, along with supporting Tasks 4.2 and 4.3 by providing experimental data for 

validation. Thus, it is of utmost importance that a close collaboration is ensured between 

modellers and experimentalists during all phases of the experimental campaign, from design of 

tests to discussion of results. Finally, Task 4.5 draws on the findings from each of the Tasks 4.2 

to 4.4 to produce mid-term and the final deliverables report, D4.2 and D4.3 respectively.  
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WP4 activities are closely connected with WP2 research on release and dispersion of unignited 

hydrogen jets in tunnels and similar confined spaces. Finally, the outcomes developed within 

tasks 4.2-4.4 will be translated into a suitable language and format to be integrated into the 

guidelines and recommendations for RCSs developed within WP6. A complete list of the 

work-package activities within Tasks 4.2-4.4 can be found in (HyTunnel-CS D4.1, 2019 ï see 

Table 1). 
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2 Analytical studies, development, and validation of engineering 

correlations (Task 4.2 / UU) 

2.1 Engineering models for assessment of blast wave and fireball of hydrogen 

tank rupture (4.2, UU) 

 Universal correlation of blast wave attenuation in a tunnel 

 Background 

State-of-the-art research done on high-pressure hydrogen tank rupture and the attenuation of 

blast waves in tunnels is very limited. Several parameters such as, the energy of the hydrogen 

stored based on volume and pressure, and the tunnel dimensions, all have a significant 

influence on peak overpressure and its attenuation in a tunnel. The condensed material used for 

explosive sources for the generation of blast wave in tunnels is mostly TNT, or its equivalent 

mass in form of another explosive charge. The initial form of the blast wave decay law, as 

shown in equation (1), indicates the dependence of the peak overpressure, 0, on the ratio of 

charge weight, Í, to volume of enclosure or tunnel, 6, taking the general form: 

 
0 θ  ! , (1) 

where ! and Â are derived empirically from best curve fits, and therefore mostly defined within 

specific parameters, such as distance or overpressure (Smith and Sapko, 2005; Curran et al., 

1966; Fang et al., 2019; Skjeltorp, 1968). However, this method limits the fitted values of ! 

and Â to one -tunnel-case applicability. Furthermore, the constraint in the power law method 

suffers from the omission of other factors, such as the geometrical shape of the tunnel (i.e., 

aspect ratio), the percentage of energy of tank that becomes blast wave and minor and friction 

losses along the tunnel distance. With the aim of developing a universally applicable model 

across various tunnel sizes, these additional parameters are all considered in the novel 

methodology developed for blast wave decay in tunnel in this study. 

 Problem formulation 

In the absence of experimental data, a CFD model, previously validated for high-pressure tank 

rupture in open atmosphere, is used in this study, to analyse the effect of high-pressure 

hydrogen tank rupture in a tunnel. This model development and the related validation processes 

are described elsewhere (Molkov et al., 2018a). Within this project, building on the previous 

CFD model for open atmosphere conditions, a parametric numerical study is conducted with 

the aim of developing a correlation between blast wave decay and tunnel confinements. This 

includes tunnels with cross-sections 24, 40 and 139 m2 (corresponding to tunnels with 1, 2 and 

5 traffic lanes) and tank masses of hydrogen ranging from 0.58 kg to 6.96 kg with pressure 

before burst values of 95 MPa, 70 MPa and 35 MPa. The dimensions and parameter of the 

tunnels and tanks used in the simulations are summarised in Table 1 below. 
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Table 1. Tunnel dimensions and hydrogen tank parameters used in rupture simulation. 

Tunnel cross section, 

m2 

Tunnel length, m Tank volume, 

L 

Tank mass, 

kg 

Tank pressure, 

MPa 

24, 40, 139 150 m 10 0.58 95 

30 1.7 

60 3.5 

 

120 

6.9 

40 1500 m 5.2 70 

40 1500 m 2.6 35 

 

 Dimensionless variables 

To determine a decay law for blast wave overpressure in a tunnel, the main impact parameters 

of influence are required. There are various interpretations of these parameters, but the most 

commonly ascertained are the following: atmospheric pressure, ὖ, energy of the blast, Ὁ, the 

cross-section area of the tunnel, ὃȟ and the distance of the wave from the energy release point, 

ὒȢ To find the relationships between these four physical quantities, dimensional analysis is 

firstly performed, identifying the three basic dimensions as mass, ὓ ὯὫ, length, ὒ ά, 

time, Ὕ ί. Table 2 shows the variables for the parameters mentioned together with their 

dimensions. 

Table 2. Variables of the problem together with the corresponding symbols and dimensions. 

Variable Symbol Basic dimensions 

Atmospheric pressure ὖ -, 4  

Energy Ὁ -,4  

Tunnel cross-section area ὃ -,4 

Distance from release ὒ -,4 
 

Using the Buckingham “ theorem, a relationship between the variables can be represented as 

follows; with four physical quantities presented and three dimensions, there is one (τ σ ρ 

independent dimensionless “ parameter. Choosing three parameters (i.e., P, L, E) to be repeating 

variables, the one dimensionless quantity is derived as “ . This derived quantity may be 

considered as a dimensionless distance based on storage tank energy and tunnel dimensions and 

represented as:  

 
ὒ
ὖὒὃ

Ὁ
 (2) 

To convert overpressure, ɝὖȟ from dimensional to dimensionless form it is divided by the 

surrounding (atmospheric) pressure: 

 
ὖ
ɝὖ

ὖ
 (3) 

 Contribution of energies 

The total energy released on tank rupture in a car fire accident includes not only the 

instantaneously released mechanical energy of compressed hydrogen (i.e., ñphysical 
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explosionò), but also the energy of chemically reacting hydrogen (i.e., combustion energy). In 

calculations, the total released energy is defined as: 

 Ὁ ẗὉ ẗὉ  (4) 

with Ὁ and Ὁ  being the total mechanical compression and chemical energies of hydrogen in 

the vessel respectively;  is a mechanical energy coefficient;  is a chemical energy 

coefficient. For high-pressure tank rupture, close to the ground surface, the shock wave is 

reflected back in its entirety, and therefore, the energy associated with the generated blast wave 

will be twice as large. However, due to energy lost to partial reflections and ground cratering, a 

factor of  ρȢψ is used. The chemical energy coefficient, , indicates the fraction of the total 

hydrogen chemical energy gradually released during complete combustion contributing to the 

blast wave. This is determined either by the inverse problem method based on experimental 

values (found to be 5 % for the open atmosphere tank rupture and described by (Molkov and 

Kashkarov, 2015)), or by identifying, through simulation, when the primary (or leading) shock 

leaves the combustion zone. The contribution from combustion energy occurs only when the 

leading shock is still within the combustion zone. Once propagated away from the combustion 

zone, the secondary wave inhibits the energy feedback, by acoustic waves overcoming the 

positive temperature gradient generated spatially ahead, towards the leading front. In the 

absence of detailed experimental data on hydrogen tank rupture in tunnels, the second method 

to determine the chemical energy coefficient  is used in this study. The determined fractions 

of  and , together with the calculated energies are listed in Table 3 below. 

Table 3. Determined energies contributing to the leading shock, based on total energy, including 

coefficients  and . 

Tank mass, kg Tank pressure, MPa   ẗὉ , MJ ẗὉ , MJ 

0.6 95 MPa 1.8 0.12 6.3 8.2 

1.7 0.11 18.9 22.9 

3.5 0.11 37.8 45.9 

6.9 0.095 75.6 79.2 

5.2 70 MPa 0.10 51.5 61.8 

2.6 35 MPa 0.11 12.5 30.9 

 

 Graphical determination of blast wave decay in tunnels 

Tunnels have different width to height ratios and the length of the tunnel influences resultant 

friction and other minor losses. To account for these phenomena, the original dimensionless 

parameters ὒ and ὖ are further modified using the similitude analysis to become ὒ and ὖ. As 

shown in Figure 1, simulated overpressure, for all tank volumes, pressures and tunnel cross-

section areas, collapse in a single line when presented using these new dimensionless 

coordinates ὒ and ὖ. Figure 1 presents the peak overpressures obtained in CFD simulations, 

the best fit line and the upper limit conservative fit line.  
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Figure 1. Relationship between peak overpressure and distance in tunnels of various lanes (1, 2 and 5), 

expressed by their dimensionless values, ὖ and  ὒ, respectively.   

This is a preliminary study of mainly academic interest rather than a source of safety guidelines 

for storage tanks and hydrogen-powered vehicle developers. However, with the current 

absence of experimental studies on high-pressure hydrogen tank rupture in a tunnel, it 

demonstrates a methodology on how to develop a universal dimensionless correlation to be 

used for safety guidelines and pre-test calculations.  

 Fireball model 

The work focuses on the assessment of hazard distances arising from the fireball following the 

high-pressure hydrogen tank rupture in a fire. The semi-empirical correlation to assess the 

fireball size in an open space is proposed. Correlation for the open space is compared against 

experimental data on compressed hydrogen tank rupture in a fire and liquefied hydrogen spills. 

The validation process is available e-Laboratory of Hydrogen Safety developed in NET-Tools 

https://fch2edu.eu/home/e-laboratory/ project where the tool for the assessment of the fireball 

size is proposed, based on the amount of the combustion products, generated after full 

combustion of all fuel and approximated to the hemisphere. The proposed correlation 

reproduces the model prediction and is in good agreement with experimental data. 

 The analysis of experiments  

A model for calculation of the maximum fireball size diameter is required for the use in 

hydrogen safety engineering, for the assessment of hydrogen tank rupture hazards both in open 

and confined spaces. There is a lack of experimental data on the subject which can be used for 

the validation of the theory and numerical models. A few experiments available in the literature 

and suitable for the fireball model validation are described briefly below. 

https://fch2edu.eu/home/e-laboratory/
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A Type HGV-4 hydrogen storage tank rupture in the bonfire test, performed in the USA, is 

described by (Weyandt, 2005; Zalosh and Weyandt, 2005). The tank had an internal volume of 

72.4 L, initial storage pressure was 34.3 MPa and the initial temperature was equal to 300 K 

(corresponding to 1.64 kg of hydrogen). At the time of rupture, i.e., 6 min 27 sec after 

initiation, (fire heat release rate was 350 kW), the pressure and temperature raised to 35.7 MPa 

and 312.15 K respectively. The reported diameter of the fireball was about 7.6 m at time 45 ms 

after the tank rupture. The second test, using a Type 3 tank (aluminium liner) of 88 L installed 

under a typical sport utility vehicle (SUV) (Weyandt, 2006) had a slightly lower initial storage 

pressure of 31.8 MPa and resulted in a fireball of 24 m. 

Two fire tests were conducted in Japan (Tamura et al., 2006) on tanks with design pressure 70 

MPa. Fire Test 1 was conducted with a Type 4 tank of 35 L volume. The last recorded pressure 

in the tank was 94.54 MPa. Fire Test 2 was conducted with a Type 3 tank of 36 L volume. The 

pressure measured just before the tank burst at 11 min after the fire exposure was 99.47 MPa. 

Both tests resulted in a fireball with a diameter of approximately 20 m as reported in the paper. 

However, the simulated maximum fireball diameter is smaller than the fireball size reported in 

the experiments (Molkov et al., 2020). There was no time indicated in the experimental paper 

when it was achieved. Based on the photographs taken during the experiment the fireball 

diameter was approximately 13 m (at 330 ms) by scaling from the size of the burner of 1.8 m, 

not 20 m as stated in the original paper. 

Two experiments were performed by a Chinese group of researchers (Shen et al., 2018) with 

high-pressure tank rupture during fire test in 2018; Type 3 tanks were used in both tests and 

had a volume of 165 L and initial pressure of 35MPa. The last measured pressure at the time of 

rupture was 43.73 and 44 MPa respectively. According to the size of large stones around the 

fire test, the maximum fireball diameter was estimated between 7-8 m.  

Maximum fireball width and height produced by ignition of the hydrogen-air mixture formed 

by the sudden release of liquefied hydrogen in the range between 2.8-89 litres has been 

assessed in the report by (Zabetakis, 1964). The correlation proposed for the liquefied 

hydrogen is represented by equation Ὀ ψȢυ ὓ Ȣ , where D ï is the fireball diameter (m) 

and M ï is the hydrogen mass, (kg). The summary of validation experiments is presented in 

Table 4 below. 

Table 4. Summary of validation experiments. 

Experiments Pressure, 

MPa 

Volume, 

L  

Hydrogen 

mass, kg 

Fireball, 

m 

Mechanical 

energy, MJ 

(Weyandt, 2005) 35.7 72.4 1.64 7.6 5.45 

(Weyandt, 2006) 

(Under-vehicle) 

34.5 88 
1.87 

24 6.44 

(Tamura et al., 2006) 94.54 36 1.406 20 (13) 5.97 

(Tamura et al., 2006) 99.47 35 1.367 20 (13) 6.04 

(Shen et al., 2018) 35 168 3.9 7-8 15.53 

(Zabetakis, 1964) LH2 (9 tests) 2.7-87.7 0.2-6.2 12-60 - 

Experiments on fireball formation and thermal effects were carried out using 0.1-100 tons of 

industrial fuels, namely, gasoline, kerosene and diesel fuel by (Dorofeev et al., 1995). In the 
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tests, the fireball started to rise from the ground, forming the mushroom shape between 1 and 2 

seconds after ignition. The correlations proposed for maximum radius R (m) of fireball versus 

fuel mass M (tonne) were R=33Ñ4ÅM(0.32±0.04). A correlation, developed by Roberts (1981), 

relates the mass of fuel involved, in this study a propane BLEVE tests is considered, to the 

maximum fireball diameter; the resultant equation takes the form D=5.8M1/3. A further 

correlation, proposed for propane-air detonation, for the fireball diameter D=6.96M0.33 was 

given by (Dorofeev et al., 1996). Another proposed correlation was applied for propane 

BLEVE at pressures of p=0.2-1.3MPa and takes the form D=5.33M0.327 (Hasegawa and Sato, 

1978). The empirical correlation reported by Hord (Hord, 1978), based on tests with rocket 

propellants, was used by (Zalosh and Weyandt, 2005), to calculate the fireball size as 

D=7.93M0.327. A recent publication (Li, 2019) gives a correlation for the fireball of D=5.8M1/3, 

which is close to those mentioned above and the same as in (Roberts, 1981). This is developed 

and validated mostly for hydrocarbon fuels i.e., propane at the stoichiometric condition; it is 

suggested that the same correlations can be applied for the hydrogen, based on one test done in 

(Zalosh and Weyandt, 2005). 

Analysis of the described experimental results shows a scatter in the observed fireball size. 

Comparing the USA (Weyandt, 2005) and Chinese (Shen et al., 2018) cases, for the larger 

volume tank, i.e., 2.3 times larger at 165L and with a pressure just before burst at 23% higher, 

the fireball is shown to be almost the same size as that of the 72.4L tank. While looking at the 

Japanese set of experiments, with tank volume half that of the USA test and 4.7 times less than 

that of the Chinese test, the pressure was higher by 2.65 and 2.15 times respectively and the 

fireball was more than twice the distance. It is thought that these variations may be due to 

several factors; the debris moved by the pressure wave affecting the appearance of the fireball, 

the entrainment of the gas outwards and non-uniformity of the tank opening during rupture, 

creating the momentum towards a one-directional jet. Let us try to prove it by comparing the 

mechanical energies stored in the tanks, keeping in mind that with higher energy there will be 

more debris involved. A summary of the parameters for the experiments are presented in Table 

4, it can be seen that the mechanical energy is practically the same for USA (Weyandt, 2005) 

and Japan (Tamura et al., 2006) tests, but the smaller tank and higher overpressure produced a 

nearly 3 times bigger fireball in Japan. The LH2 test parameters (Zabetakis, 1964) are mostly 

excluded from the table due to the nature of the storage and the absence of high-pressure 

storage and initial mechanical component. 

 Fireball in open space 

A model for calculation of the fireball size, due to high pressure tank rupture, in a fire is 

available in the e-Laboratory of Hydrogen Safety. The methodology is based on the work by 

Dadashzadeh (Dadashzadeh et al., 2017). Calculation of a fireball size after a stand-alone tank 

rupture is a part of the methodology for the calculation of the blast wave decay, considering 

compressed gas vessel rupture (Molkov and Kashkarov, 2015), and hazard distances attributed 

to the blast parameters. According to the technique, the fireball size is calculated as a 

hemisphere, occupied by combustion products, resulting from complete combustion of released 

hydrogen in air (non-premixed turbulent combustion at contact surface occurs at a 

stoichiometric concentration of reactants). The hydrogen mass in reservoir mH2 is calculated 

using the Abel-Noble EOS based on storage pressure p1, temperature T1 and tank volume V and 

has the form  

https://elab-prod.iket.kit.edu/integrated/fireball_size/input
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ά ὠ
ὴ

ὴὦ Ὑ Ὕ
 (5) 

where RH2 is the hydrogen specific gas constant (J/(kg K)) and b=0.007691 is the hydrogen co-

volume constant (m3/kg). The volume of hydrogen in the reservoir is 

ὠ
ά

ὓ
ςzςȢτ (6) 

where MH2 is the molecular mass of hydrogen (g/mol). The volume of air required to burn the 

hydrogen is 

ὠ ςȢσψzὠ  (7) 

The fireball diameter is then 

Ὀ ςz
σὠ

ς“

Ⱦ

 (8) 

where ὠ ὠ ὠ φzȢψυ, i.e., the product of the total volume of combustion 

products and the expansion coefficient, 6.85. This is equivalent to the empirical correlation 

Ὀ ωȢψz ά
Ⱦ

 (9) 

Figure 2 combines described hydrogen experimental data on the fireball size versus mass of 

fuel for several studies. The figure gives the new empirical correlations proposed for the stand-

alone tank rupture in open atmosphere ñbest fitò, Ὀ ωȢψz ὓ Ȣ  ,(thick solid line), and also 

ñconservative fitò Ὀ ρρȢυz ὓ Ȣ , (thick dashed line). The LH2 correlation as described by 

Zabetakis (Zabetakis, 1964) is also included. In Figure 2, ñthick crossesò symbols show the 

fireball size prediction using the e-Laboratory of Hydrogen Safety tool for high-pressure tank 

tests and the LH2 spills based on the mass of spilt hydrogen. As can be seen, there are two 

studies that fall substantially below all three empirical correlations. The upright ñtriangleò 

symbol indicates fireball size 7.7 m in the experiment by (Weyandt, 2005), which was 

measured at time 45 ms after the tank rupture and thought to be not the maximum that has been 

registered. The solid ñdiamondò symbol indicates the fireball size as measured in the 

experiment by (Shen et al., 2018), which might be due to non-instantaneous release and 

combustion decreasing the real size of the fireball. The e-Laboratory prediction for both cases 

has shown a bigger fireball size than deduced from experimental studies and is in line with the 

ñbest fitò correlation. Another light grey ñsquareò symbol, which is above the empirical 

correlation, is the experiment for the under-vehicle tank rupture test by (Weyandt, 2006). This 

tank setup is out of scope for this study but has been added to show that the presence of the 

vehicle increases the fireball size compared to stand-alone tank rupture. Light grey ñcirclesò 

and black ñcrossesò relate to the study by Tamura (Tamura et al., 2006), where the larger 

fireball size of 20 m suggests that the shape of the fireball was probably elongated and / or the 

https://elab-prod.iket.kit.edu/integrated/fireball_size/input
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directional jet caused by the shape of the tank opening is resulting in that value, For the model 

validation, 13 m size has been chosen based on the conclusions from (Molkov et al., 2020). 

 

 

Figure 2. Experimental fireball size versus mass of hydrogen: comparison with correlations. 

 Fireball in tunnel 

The same study by Li (Li, 2019) also suggests the correlation for the assessment of a maximum 

longitudinal length Lmax of the fireball in a tunnel for a given cross-sectional area, is given by 

 
ὒ ρπς, (10) 

where Mf ï is the mass of fuel and AT ï is the tunnel cross-section area, again proposed for 

hydrocarbons. It was also shown that the fireball length in a tunnel of 50 m2 cross-section area 

is much longer than the fireball diameter when the fuel mass exceeds around 5 kg for the 

proposed correlation in an open space. 

Figure 3 shows the comparison of the best fit and conservative correlations, (correlations were 

described in the previous section of this report), which relate to open space fireballs (annotated 

as dotted lines). Figure 3 also shows the correlations derived by Li (Li, 2019) for a tunnel 

(annotated as solid lines) where, one, two and five traffic lanes with cross-sections of 24, 40 

and 140 m2 are considered. These tunnel cross-sectional areas are likewise considered by 

Shentsov (Shentsov et al., 2019), annotated as ñthis studyò in Figure 3, where a simple 

equation, ὒ  has been incorporated to account for the amount of combustion products. 

The correlation for the fireball in a tunnel is assumed to be one-dimensional, in contrast to the 

three-dimensional fireball in an open environment and hence, the difference in decay is clearly 
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seen. For the smaller masses of fuel, this may lead to underestimation of the tunnel length 

occupied by the fireball. When the actual fireball size is less than the tunnel width the 

correlation presumes it still occupies the whole tunnel width, resulting in the decrease of the 

fireball length along the tunnel. In Figure 3 it is manifested by solid lines that the correlation 

for tunnels by (Li, 2019) is being below the dotted lines correlations for open atmosphere and 

underpredicts by 2.5 times the proposed one in this study justified by physical expansion of 

combustion products. It is worth noting that for the tunnel the effect of wind is not considered, 

and the model needs validation against realistic experiments which are absent to the best 

knowledge of authors. This can be addressed by the means of CFD simulations in the next 

study. 

But the recent CFD calculation in Section 2.1.2.4 has shown that the shock propagation created 

the momentum which pulled the fireball inside the tunnel with the speed of 20 m/s; at this 

condition all such correlations cannot be applied in the realistic estimation. Even the 

comparison of the Lmax with ὒ , for the same tunnel cross-section area AT and mass of 

inventory which created the volume of combustion products burned at stoichiometry Vburned 

give under-prediction by 2.5 times. This means that none can be applied. 

 

Figure 3. Comparison of open space and inside the tunnel correlations. 

 Simulation of fireball in a tunnel 

CFD simulation of fireball dynamics after tank rupture has been performed in a tunnel with a 

cross-section area of 83 m2, with a tank of 62.4 L and 700 bar, with the total mass of 2.5 kg and 

it was presented during HyTunnel-CS Stakeholdersô Workshop (Shentsov, 2020). Figure 4 

shows cross-section of the modelled tunnel design and corresponding cross-section of the 

calculation domain in CFD simulations. Figure 5 shows the simulated fireball dynamics in the 

tunnel cross-section and in projection to the tunnel walls using temperature field. Fireball size 

increases till 100 ms when reaching its maximum size of about 12 m in the longitudinal 

direction and 5.5 m in height. At the same moment, the fireball occupies the whole 13 m tunnel 

width. After 100 ms the fireball starts to rise above the ground and travel to the side dragged by 

the air force created by the blast wave. This creates a series of additional hazards to people and 

vehicles. The fireball velocity at the initial stage was 20 m/s. 
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Figure 4. Simulated tunnel cross-section, tunnel drawing (left), simulated geometry (right). 

In Figure 5 the left column shows the dynamics of the fireball propagation by temperature 

contours plane across the middle of the tunnel while on the right column the temperature 

contours are shown on the tunnel walls and ground. At the initial stage the fireball is not 

touching the side wall until 200 ms and then increases with the size starting to propagate 

towards the left. 

In this particular example, the fireball is relatively small, fireball development is similar to the 

behaviour of fireball in open space and well reproduced by the ñbest fitò correlation in Figure 3 

but further study are required to assess the hazard distance at which this fireball will propagate 

along the tunnel. 

  


































































































































































































































































































































































































































