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TheHyTunnelCS project aims to conduct internationally leadingmpoemative research

(PNR) to close knowledge gaps and technological bottlenecks in the provisafetgfand
acceptable level of riskn the use of hydrogen and fuel cell cars as well as hydrogen delivery
transport in underground transportation systems. Work Package 4 (WP4) of HyC$w#l
focus on the investigation of hydrogen releases and thiesegjuent ignition within

underground transportation systems.

This document presents tteliverable(D4.3) onthe esults of experimental, analytical and
numerical studies regardimgleases anexplosiondgn tunnels anather confined spaces

Hydrogen safetyhazardsconsequence assessmemignited releasget fire; deflagration
detonationquantitative risk assessmghydrogenin tunnel explosion mitigation;
engineering correlatigmumerical simulationexperimenttunnelsafety ventilationy water
mist hydrogen vehiclghydrogen dispersigmydrogen combustion.
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BLEVE Boiling Liquid Expanding Vapor Explosion

FRR Fireresistance rating

DDT Deflagrationto-Detonation Transition
DNS Direct Numerical Simulations

HPV Hydrogen Powered Vehicle

HRR Heat Release Rate

LES Large Eddy Simulations

LFL Lower Flammability Limit

LNB Leak-no-burst

MIE Minimum Ignition Energy

NTP Normal Temperature and Pressure
PIARC  Permanent International Association of Road Congresses
PNR PreNormative Research

PPP Pressure Peaking Phenomena
QRA Quantitative Risk Assessment

RUD Run-Up Distance

SF Safety

TPRD ThermalPressure Relief Device
UFL Upper Flammability Limit

Accidentis an unforeseen and unplanned event or circumstance causing loss or injury.

Flammability range is the range of concentrations between the lower and the upper
flammability limits. The lower flammability limi{LFL) is the lowest concentration of a
combustible substance in a gaseous oxidizer that will propagate a Tlaenepper

flammability limit(UFL) is the highest concentration of a combustible substance in a gaseous
oxidizer that will propagate a flame.

Deflagration is the phenomenon of combustion zone propagation at the velocity lower than the
speed of sound (stdonic) into a fresh, unburned mixture.

Detonationis the process of combustion zone propagating at the velocity higher than the speed
of sound (supersonic) in the unreacted mixture.

Fire resistance ratingis a measure of time for which a passive fire protection system can
withstand a standard fire resiste test.

Harm is physical injury or damage to health.

Hazard is any potential source or condition that has the potential for causing damage to
people, property and the environment.

Hazard distanceis a distance from the (source of) hazard to a deternfioyeghysical or

numerical modellingor by regulation) physical effect value (normally, thermal or pressure)

that may | ead to a harm condition (ranging f
equipment or environment.
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Hydrogen safety engineerings theapplication of scientific and engineering principles to the
protection of life, property anithe environment from adverse effects of incidents/accidents
involving hydrogen.

Incident is something that occurs casually in connection with something else.

Limiting oxygen index is the minimum concentration of oxygen that will support flame
propagation in a mixture of fuel, air, and nitrogen.

Mach disk is a strong shock normal to the undepanded jet flow direction.

Minimum ignition energy of flammable gaseand vapours is the minimum value of the

electric energy, stored in the discharge circuit with as small a loss in the leads as possible,
which (upon discharge across a spark gap) just ignites the quiescent mixture in the most
ignitable composition. For given mixture composition the following parameters of the

discharge circuit must be varied to get the optimum conditions: capacitance, inductivity,
charging voltage, as well as shape and dimensions of the electrodes and the distance between
electrodes.

Normal temperature and pressurg(NTP) conditionsaretemperature 293.15 K and pressure
101.325 kPa.

Permeationis the movement of atoms, molecules, or ions into or through a porous or
permeable substance.

Separation distanceds the minimum separation betwegmazard source and an object
(human, equipment or environment) which will mitigate the effect of a likely foreseeable
incident and prevent a minor incident escalating into a larger incident.
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TheHyTunnelCS project aims to conduct internationally leadingmpwvemative research

(PNR) to close knowledge gaps aedhnological bottlenecks the provision of safety and
acceptable level of riskn the use of hydrogen and fuel cell cars as well as hydrogen delivery
transport in underground transportation systems. Work Package 4 (WP4) of HyTSwwl
focus on tle investigation of hydrogen releases and their subsequent ignition within
underground transportation systems.

This document presents tteliverable(D4.3) Final report on analytical, numerical and
experimental studies on explosions, including innovatigegntion and mitigation strategies
regarding ignited releasesd explosiong tunnels and underground parking.

The activitieswithin this reportfollow the detailed programme and plan defined in deliverable

D4. 1 fADetail ed r eseiaanc hi mp ruwmngdearngmreo wmd etxrpd nossp ¢
(HyTunnelCS D4.1, 2019)Some of the planned activities have been updated in response to
developments and findings within the projekffirst step to the preparation of this document

was gi ven by 3 Resdlteoseaxpenmentali dhdlytical and numerical studies for

final repord which presented a first version of the report on the research outcomes.

The experimental campaigns, analytical and numerical studies irfiPdaddresshe

identified knowledge gaps on explosion prevention and mitigation. These were defined through
the critical review of the state of the art conducted in HyTufn8l D1 . 2 A Report on
hazards and risks in tunnel adCSDig,239).Mmhel ar con
analytical, numericahnd experimental studies aim to imprdkie understanding of hydrogen

explosion hazards in tunnels and similar confined spaces, generating unique experimental data

to support the validation of engineering ananeuical models to be used in hydrogen safety
engineering. The final scope is the identification and evaluation of innovative safety strategies

and engineering solutions to prevent and mitigate hydrogen explosions in underground
transportation systems. Thatcomes of the research will be used as an input to the
recommendations for RCS and for an inherently safer use of hydrogen vehicles in underground
transportation systems. A detailed list of the wpéckage objectives can be found in

(HyTunnelCS D4.1, P19).

Work Package 4 is structured in 5 tasks closely interconneatie@éach other and with
HyTunnelCS work plan. The first task, 4.1, aimed at the design of the research programme.
Task 4.2 focuses on the development of analytical models and engirAe&seu)correlations.

Task 4.3 aims at the development and validatio@FD model against experiments available

in literature or performed within HyTunr@S programme. Task 4.3 aims at performing the
experimental work that will enhance the current understanding of explosion prevention and
mitigation, along with supporting Tes 4.2 and 4.3 by providing experimental data for
validation. Thus, it is of utmost importance that a close collaboration is ensured between
modellers and experimentalists during all phases of the experimental campaign, from design of
tests to discussiorf cesults. Finally, Task 4.5 draws on the findings from each of the Tasks 4.2
to 4.4 to produce miterm and the final deliverables report, D4.2 and D4.3 respectively.

Page23 of 243



Grant Agreement No: 826193 tg%el
D4.3. Final report on analytical, numerical and experimental studies on explosions, including
innovative preventiomandmitigation strategies

WP4 activities are closely connected with WP2 research on release and dispersignitedini
hydrogen jets in tunnels and similar confined spaces. Finally, the outcomes developed within
tasks 4.24.4 will be translated into a suitable language and format to be integrated into the
guidelines and recommendations for RCSs developed within YWEB@&mplete list of the
work-package activities within Tasks 4424 can be found in (HyTunn@S D4.1, 2019 see
Table 1).
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State-of-the-art research done on higinessure hydrogen tank rupture and the attenuation of

blast waves in tunnels is veliynited. Several parameters suchtag energy of the hydrogen

stored based on volume and pressure, and the tunnel dimeadlibiasea significant

influence on peak overpressure and its attenuation in a tunnel. The condensed material used for
explosivesources for the generation of blast wave in tunnels is mostly TNT, or its equivalent
mass in form of another explosive charge. The initial forth@blast wave decay lavas

shown inequation(1), indicatesthe dependence of the peak overpres€yren the ratio of

charge weight] , to volume of enclosure or tunnél, taking thegeneral form:

06 1 — 1)

where! andAare derived empiricallfrom best curve fits, and therefore mostly defined within
specific parameteysuch as distance or overpressi8mith andSapko, 2005; Curran et al.,

1966; Fang et al., 2019; Skjeltorp, 1968). Howetles, methodimits the fitted values off

andAto one-tunnelcase applicability. Furthermore, the constraint in the power law method
suffers from the omission of other fac$ such as the geometrical shape of the turiree| (

aspect ratio), the percentage of energy of tank that becomes blast wave and minor and friction
losses alonghetunnel distancéVith theaim of developng a universally applicable model

across variosi tunnel sizes, thesdditionalparametersreall considered in the novel

methodology developed for blast wave decay in tunnel in this study.

In theabsence of experimental data, a CFD model, previously validatbdyfepressure tank
rupture in open atmosphere, is used in this stiodgnalyse the effect of highressure

hydrogen tank rupture in a tunn&€his model development arttle relatedsalidation processes
are described elsewhgdolkov et al., 2018a)Within this project building on the previous
CFD model for open atmosphere conditicmparametric numerical study is conducted with
the aimof developng a correlation between blast wave decay and tunnel confinements. This
includes tunnels with crossectims 24, 40 and 139 ffcorresponding to tunnels with 1, 2 and
5 traffic lanes) and tank masses of hydrogen ranging from 0.58 kg to 6véithkgressure

before bursvaluesof 95 MPa, 70 MPa and 35 MPEhe dimensions and parameter of the
tunnels and tankssed inthe simulations arsummarisedn Tablel below.
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Tablel. Tunnel dimensions and hydrogen tank parameters used in rupturetsimul

l%el

Tunnel cross section, Tunnel length, m Tank volume,| Tank mass,| Tank pressure,
m? L kg MPa

24, 40, 139 150 m 10 0.58 95
30 1.7
60 3.5
6.9

40 1500 m 120 5.2 70

40 1500 m 2.6 35

To determine a decay law for blast wave overpressure in a tunnel, the main impact parameters

of influencearerequired There are various interpretations of these parameterthdmbst
commonlyascertained are the following: atmospheric pressurenergy of the blase), the

crosssection area of the tunnélhand the distancef the waverom the energy release point,

08To find the relationships between these four physical quantiiileensional analysis is
firstly performedidentifying the three basic dimensions as méss Q" Qength 0 &,

time, Y
dimensions.

Table2. Variables of the problem together with the corresponding symbols and dimensions.

Usingthe Buckinghant theorem a relationship between the variables can be represented as

Variable Symbol | Basic dimensions
Atmospheric pressure 0 -, 4
Energy O -, 4
Tunnel crosssection area 0 -, 4
Distance from release 0 - 4

i . Table2 shows the variables for the parameters mentioned together with their

follows; with four physical quantities presented and three dimensions, there s ore ( p
independent dimensionlesgarameter. Choosing three parameters (i.e., P, io Bgrepeating

variables, the one dimensionless quantity is derivetl as ——. This derived quantity may be

considered as a dimensionless distance based on stmagmergy and tunnel dimensiarsl

represented as:

2)

To convert overpressural hfrom dimensional to dimensionless form it is divided by the
surrounding (atmospheric) pressure:

=

-2

C-zl @

©)

The total energy released on tank rupture in a car fire accident includes not only the
i nstantaneousl!y

r el

eased

mechani

cal
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e x pl os i o ntlegnergybfechemically seacting hydrogend.,combustion engpy). In
calculations, the total released energy is defined as:

0O | tO 1 tO 4
with'©O andO beingthe total mechanical compression and chemical energies of hydrogen in
the vessel respectively;is amechanical energy coefficiemt;is achemical energy
coefficient. For higkpressure tank ruptureloseto the groundsurfacethe shock wave is
reflected back in its entiretand thereforgthe energy associated with theneratedblast wave
will be twice as large. However, due to energy lost to partial reflections and ground cratering, a
factor off p&is usedThechemical energy coefficierit,, indicates the fraction of the total
hydrogen chemical energy gradually released during complete coarbastitributing to the
blast wave. This is determined either by the inverse problem method based on experimental
values (found to be 5 % for the open atmosphere tank rugtdiescribed byMolkov and
Kashkarov, 2015))pr byidentifying, throughsimulaion, whenthe primary (or leading) shock
leavesthe combustion zone. Thwentribution from combustion energy occurs only when the
leading shock is still within the combustion zone. Once propagated away from the combustion
zone,the secondary wave inhibits the energy feedpaglacoustic waves overcoming the
positive temperature gradient generated spatially at@adrds the leading front. the
absence of detailed experimental data on hydrogen tank rupture in ftin@skscad method
to determine the chemical energy coefficiens used in this study. The determined fractions
of| andf , together with the calculated energies are listelthinie 3 below.

Table3. Determined energies contributing to the leading shock, based on total energy, including
coefficients andf .

Tank mass, k¢ Tank pressure, MP| | I | O ,MJ|f tO ,MJ
0.6 95 MPa 1.8 0.12 6.3 8.2
1.7 0.11 18.9 22.9
35 0.11 37.8 45.9
6.9 0.095 75.6 79.2
52 70 MPa 0.10 51.5 61.8
2.6 35 MPa 0.11 12.5 30.9

Tunnels have different width to height ratend the length of the tunnieffluences resultant
friction andotherminor losses. To account for these phenomena, the original dimensionless
parameter$ and0 are further modified using the similitude analysibéacomed andd . As
shown inFigurel, simulated overpressure, for all tank volumes, pressures and tunnel cross
section areas, collapse in a single line when presented using these new dimensionless
coordinated andD . Figurel presents the peak overpressures obtained in CFD simulations,
the best fit line and the upper limit conservative fit line.
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Figure 1. Relationship between peak overpressure and distance in tunnels of various lanes (1, 2 and 5),
expressed by their dimensionless valbesand 0 , respectively.

This is a preliminary study of mainly academic interest rather tisa@e of safety guidelines
for storage tankand hydrogespowered vehicle developers. However, with the current
absence of experimental studies on kpghssure hydrogen tank rupture in a tunnel, it
demonstrates a methodology on how to develop a univdireehsionless correlation to be
used for safetguidelines and preest calculations.

The work focuses on the assessment of hazard distances arising from the fireball following the
high-pressure hydrogen tank rupture in a fire. The sampirical correlation to assess the

fireball size in an open space is proposed. Correlation for the open space is compared against
experimental data on compressed hydrogen tank rupture in a filieja@fted hydrogen spills.

The validationprocesss availablee-Laboratory of Hydrogen Safety developed in NEGJols
https://fch2edu.eu/homelaboratory/project where the tool for the assessmertheffireball

size is proposedbased on the amount of the combustion prodgetserated after full

combustion of all fuel and approximated to the hemisphere. The proposed correlation
reproduces the model prediction aath good agreement with experimental data.

A model for calculation of the maximum fireball size diameter is required for the use in
hydrogen safety engineeriffgr theassessment of hydrogen tank rupture hazards both in open
and confined spaces. There is a lack of experimental data saljeet which can be used for

the validation of the theory and numerical modaléew experiments available in the literature
and suitable for the fireball model validation are described briefly below.
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A TypeHGV-4 hydrogen storage tank rupture in benfire testperformed in the USAs
described byWeyandt, 2005; Zalosh and Weyandt, 2005). The tank had an internal volume of
72.4 L, initial storage pressure was 34.3 MPa and the initial temperature was&foK
(corresponding to 1.64 kgf hydrogen). Athetime of rupturei.e.,6 min 27 seafter
initiation, (fire heat release rate was 350 k\Wig pressure and temperature raised to 35.7 MPa
and 312.15 K respectively. The reported diameter of the fireball was aboutat.time 45 ms
after the tank rupture. The second tastng aType 3 tankaluminium liner)of 88 L installed
under a typical sport utility vehicle (SUV) (Weyandt, 208&§a slightly lowennitial storage
pressure of 31.8 MPa and resulted in a fireball of 24 m

Two fire tests were conducted in Jap&arfiura et al., 2006) on tanks wihksignpressure 70

MPa. Fire Test 1 was conducted with a Type 4 tank of 35 L volume. The last recorded pressure
in the tank was 94.54 MPa. Fire Test 2 was conducted with a Type 3 tank of 36 L volume. The
pressure measurgast before the tank burst at 11 min aftee fire exposure was 99.47 MPa.

Both tests resulted in a fireball with a diameter of approximately 20 m as reported in the paper.
However, the simulated maximum fireball diameter is smaller than the fireball size reported in
the experiments (Molkov et.a2020). There was no time indicated in the experimental paper
when it was achieved. Based on the photographs taken during the experiment the fireball
diameter was approximately 13 m (at 330 ms) by scaling from the size of the burner of 1.8 m,
not 20 m a stated in the original paper.

Two experiments were performed by a Chinese group of researchers (Shen et al., 2018) with
high-pressure tank rupture during fire test in 2018; Type 3stargkeused inbothtestsand

hada volume of 165 land initial presste of 35MPaThelast measuregdressure at the time of
rupturewas43.73 and 44 MPa respectiveAccording to the size of large stones around the

fire test, the maximum fireball diameter was estimated betwm.7

Maximum fireball width and height praded by ignition of the hydrogeair mixture formed
by the sudden release of liquefied hydrogen in the range betwe8f Ri&s has been
assessed in the report by (Zabetakis, 1964). The correlation proposed for the liquefied
hydrogen is represented byuationO & 0 8 , whereDi is the fireball diametemf)
andM i is the hydrogen maskd). The summary of validation experimentpresented in
Table4 below.

Table4. Summary of validation experiments.

Experiments Pressure, | Volume, | Hydrogen | Fireball, | Mechanical
MPa L mass, kg m energy, MJ

(Weyandt, 2005) 35.7 72.4 1.64 7.6 5.45
(Weyandt, 2006) 34.5 88 187 24 6.44
(Undervehicle) '
(Tamura et al., 2006) 94.54 36 1.406 20 (13) 5.97
(Tamura et al., 2006) 99.47 35 1.367 20 (13) 6.04
(Shen et al., 2018) 35 168 3.9 7-8 15.53
(Zabetakis, 1964) LH> (9 tests) | 2.7-87.7 0.26.2 12-60 -

Experiments on fireball formation and thermal effects were carried out usiif0.tbns of
industrial fuels, namely, gasoline, kerosene and diesel fu@drpfeev et al.1995).In the
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tests, the fireball started to rise from the grqdadming the mushroom shape between 1 and 2
seconds after ignition. The correlations proposed for maximum rRdm$ of fireball versus
fuel masaM (tonne) wereR = 3 3 N%42R ¥ A correlation developed byRoberts(1981),
relates thanass ofuel involved, in this study propane BLEVE testsiconsidered, tthe
maximumfireball diameterthe resultant equation takes the fdbm5.8MY3. A further
correlation proposed fopropaneair detonationfor the fireball diameter D=6.96#°was
givenby (Dorofeev et al., 1996 Anotherproposed correlation was applied for propane
BLEVE at pressures of p=623MPaand takes the ford=5.33M"3?’ (Hasegawa and Sato,
1978). The empirical corralion reportedy Hord(Hord, 1978) based on tests with rocket
propellantswas usedby (Zalosh and Weyandt, 20Q%) calculate the fireball sizes
D=7.93M327. A recent publication (Li, 2019) givescorrelation for the firebalbf D=5.8M"3,
which is close to those mentioned above and the same as in (RobertsTh&d%)developed
and validated mostly for hydrocarbon fuels i.e., propane at the stoichiometric cgntlion
suggestdthatthe same correlatiorcsan be applied for the hydrogen, based on one test done in
(Zalosh and Weyandt, 2005).

Analysis of the desdyed experimental results shows a scatter in the observed fireball size.
Comparing the USA (Weyandt, 2005) and Chinese (Shen et al., 2018)foatwsslarger
volumetank, i.e.,2.3 timedargerat 165Landwith apressurgust before bursat23% higher

the fireball is shown to balmostthe same sizas that of the 72.4L tankVhile looking &the
Japanese set of experimentith tank volumehalf that of thdJSA testand 4.7 times leghan

tha of theChineseest,the pressuravashigher by 2.65 ané.15 times respectivegndthe

fireball was more thatwice the distancelt is thoughtthat these variations may dae to

several factorghe debris moved by the pressure wave affecting the appearance of the fireball
the entrainment of the gasitwards and neaniformity of the tank opening during rupture
creating the momentutowards aonedirectional jet. Let us try to prove it by comparing the
mechanical energies stored in the tanks, keeping in mind that with higher energy there will be
moredebris involvedA summaryof the parameterf®r the experiments aggresented ifable

4, it can be seen that the mechanical energy is practicalgathe for USA (Weyandt, 2005)

and Japan (Tamura et al., 2006) tests, but the smaller tank and higher overpresisuea

nearly 3 times bigger fireball in Japan. Thd.ltestparameters (Zabetakis, 19@temostly
excluded from the table due to theuratof the storage artdeabsence of higipressure

storage and initial mechanical component.

A model for calculation of the fireball sizéue to high pressure tank rupturea fireis
availablein thee-Laboratory of Hydrogen Safetffhe methodology is based on the work by
Dadashzade(Dadashzadeh et al., 201Qalculation of a fireball size after a staaldne tank
ruptureis a part of the methodology for the calculation of the blast wave demasidering
compressed gas vessel rupture (Molkov and Kashkarov, 2fiidbhazard distances attributed
to the blast parameters. According to the technique, the fireball sizeusatedl as a
hemisphereoccupied by combustion produgctesulting fromcomplete combustion of released
hydrogen in air (nopremixed turbulent combustion at contact surface occurs at a
stoichiometric concentration of reactani&)e hydrogen mass in servoirmyz is calculated
using the AbeNoble EOS basedn staragepressurgs, temperaturd’; and tank volumé&/ and
has the form
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, : n
@ ORE Y Y ®)

whereRn2 is the hydrogen specific gas constant (J/(kg K)) and b=0.00768t Isydrogen ce
volume constant (kg). The volume of hydrogen in the reservoir is

, a
© 5 C @ (6)

where M2 is the molecular mass of hydrogen (g/mdhevolume ofair requiredto burn the
hydrogen is

W C® P w (7)
The fireball diameter is then
, T
ow
0 ¢z —— 8
C
wherew ®W @ Zed yie. theproduct of theotal volume of combustion

products andheexpansion coefficient.85 This is equivalent to thempirical correlation
0 wpza " (9)

Figure2 combines described hydrogen experimental data on the fireball size versus mass of

fuel for several studiesThe figure gives the new empirical correlations proposed fostéme
alone tank rupture i,@ ogRed 8a(thickessligplime andalséi b e s t
ficonseftaCatp @ed 2, (thick dashed line)The LH correlationas describetly
ZabetakigZabetakis, 1964is also includedin Figure2,it hi ck crosseso symbo
fireball size predictiomusingthee-Laboratory of Hydrogen Safetgol for high-pressure tank

tests and the H> spills based on the mass of spilt hydrogen. As can be seen, there are two
studies that falsubstantiallybelowall three empiricatorrelatiors. Theuprightiit r i an gl e 0
symbol irdicates fireball size 7.7 m in the experiment by (Weyandt, 2005), which was

measured at time 45 ms after the tank rupture and thought to be not the maximum that has been
registered. Theolidii d i a mo nd 0 s ytheliirebhll sizeastheasuaet ia the

experiment by (Shen et al., 2018), which might be due temgiantaneous release and

combustion decreasing the real size of the fireball. Thab®ratory prediction for both cases

has shown a bigger fireball sitean deduced from experimensalidies adis in line with the
Abest fito c dightrgeyfisguareésymbol whichastabogerthempirical

correlation is the experiment for the undeehicle tank rupture test by (Weyandt, 2Q0B)is

tank setups out of scopéor this studybut ha beeradded to show that the presence of the

vehicle increases the fireball size compared to sédmaoke tank rupturd.ight grey ficircleso
andblackficroseg relate to the study by Tamuf@amura et al., 2006yhere the larger

fireball size 0f20 m siggestghat the shape of the fireball was probably elongated anthe
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directional jet caused by the shape oftdre&k opening is resulting in that vaJé®r the model
validation 13 m size has been chosen based on the conclusions from (Motlkkioy2020).

10

D=115*MO%
rd

-
Dge=9.8*M0-33 A Weyandt (2005) 72.4L
D=8.5*M0-33 In| Weyandt (2005) Under-Vehicle 88L
Tamura (2006) 36L
I I Tamura (2006) 35L
Tamura (2006) 36L (Molkov et al 2020)
Tamura (2006) 35L (Molkov et al 2020)
Shen et al. (2018) 168L
—B— Zabetakis (1965) - LH2-Width
m  Zabetakis (1965) - LH2-Height
x e-Laboratory mass @700bar
—— Zabetakis (1965) - LH2 correlation
— — This study - Concervative
— This study - Best fit

Fireball size, m

* 4 4 +

0.1 1 10
Hydrogen mass, kg

Figure 2. Experimental fireball size versus mass of hydrogemparison with correlations.

The same study by Li (Li, 2019) also suggests the correlation for the assessment of a maximum

longitudnal lengthLmaxof the fireball in a tunndbr a given crossectional areds given by
0 p T, (10)

whereM: 1 is the mass of fuel anir 1 is the tunnel crossection area, again proposed for
hydrocarbons. It was also shown that the fireball length in a tunnelrof sssection area
is much longer than the fireball diameter when the fuel mass exceeds around 5 kg for the
proposed cortation in an open space.

Figure3 shows the comparison of the best fit and conservative correlafoonselations were
described in the previous section of this repaevhich relate tmpenspacdireballs @nnotated
asdotted lines). Figure3 alsoshowsthe correlatios derivedoy Li (Li, 2019)for a tunnel
(annotated asolid lines)where one, two and five traffic lanes with cressctions of 24, 40
and 0 m? are consideredlhese tunnel crossectional areas are likewise considered by
ShentsoShentsovetal.,20)9 annot at ed FHRguredivthére asimpet udy o

equation0 has beemncorporated to account ftine amount of combustion products

The correlation for the fireball in a tunrislassumed to be ordtmensonal, incontrasto the
threedimensional fireball in an open environment and hetheedifference in decay is clearly
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seen. For the smaller masses of fuel, this may lead to underestimation of the tunnel length
occupied by the firebalWhentheactualfireball size is less than the tunnel width the
correlation presumes it still occupies the whole tunnel wr@sulting in the decrease of the
fireball length along the tunndh Figure3 it is manifested by solid lines that the correlation
for tunnels by(Li, 2019)is being below the dotted lines correlations for open atmosphere and
underpredicts by 2.5 times the proposediartais study justified by physical expansion of
combustion products. It is worth noting that for the tunnel the effect of wind is not considered,
and the model needs validation against realistic experiments which are absent to the best
knowledge of authar This can be addressed by the means of CFD simulations in the next
study.

But the recent CFD calculation in Secti®id.2.4has shown thahe shockpropagation created
the momentum which pulled the fireball inside the tunnel with the speed of 2atris
conditionall such correlations cannot be applied in the realistic estimation. Even the

, for the same tunnel crosection are@dr and mass of

comparison of th&maxwith 0

inventory which created the volume of combustion products burned at stoichiMngisy
give undesprediction by 2.5 times. This means that none can be applied.

100 |——(Li, 2019) -Single lane, 24m2
——(Li, 2019) - Double lane, 40 m2

90— (Li, 2019) - Five lane, 140 m2

80 " This study -Single lane, 24m2

- = =This study - Double lane, 40 m2
70 = = This study - Five lane, 140 m2 -

------ "Best fit" open space A
60 o “"Concervative" open space -7

50

Distance, m

40
30
20
0

Hydrogen mass, kg

Figure 3. Comparison of open space and inside the tunnel correlations.

CFD simulation of fireball dynamics after tank rupture has been performed in a tunnel with a
crosssection area of 881, with a tark of 62.4L and 700bar, with the total mass of 2kg and

it was presented during HyTunr€lS St akehol der sé6 WoFidguehop (She
shows crossection of the modelled tunnel design and corresponding-sea$i®n of the

calculation domain in CFD simulatiorfsigure5 shows the simated fireball dynamics in the

tunnel crosssection and in projection to the tunnel walls using temperature field. Fireball size
increases till 100 ms when reaching its maximum size of about 12 m in the longitudinal

direction and 5.5 m in height. At thensa moment, the fireball occupies the wholeri8unnel

width. After 100ms the fireball stastto rise above the ground and travel to the side dragged by
the air force created by the blast wave. This creates a series of additional hazards to people and
vehicles. The fireball velocity at the initial stage was 20 m/s.
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s

—

Figure 4. Simulated tunnel crossection, tunnel drawing (left), simulated geometry (right).

In Figure5 the left column shows the dynamics of the fireball propagation by temperature
contours plane across the middle of the tunnel while on the right column the temperature
contours are shown on the tunnel waltglground At the initial stage the fireball is not
touching the side wall until 200 ms and thecreasesvith the size starting to propagate
towards the left.

In this particular example, the fireball is relatively small, fireball development is simitae
behaviour of fireball i n open spaceFgmed well
but further studyarerequired to assess thazard distance at which this fireball will propagate

along the tunnel.
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